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Detecting and understanding meaningful
cancerous mutations based on
computational models of mRNA splicing
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Cancer research has long relied on non-silentmutations. Yet, it has become overwhelmingly clear that
silent mutations can affect gene expression and cancer cell fitness. One fundamental mechanism that
apparently silent mutations can severely disrupt is alternative splicing. Here we introduceOncosplice,
a tool that scores mutations based on models of proteomes generated using aberrant splicing
predictions. Oncosplice leverages a highly accurate neural network that predicts splice sites within
arbitrary mRNA sequences, a greedy transcript constructor that considers alternate arrangements of
splicing blueprints, and an algorithm that grades the functional divergence between proteins based on
evolutionary conservation. By applying this tool to 12M somatic mutations we identify 8K deleterious
variants that are significantly depleted within the healthy population; we demonstrate the tool’s ability
to identify clinically validated pathogenic variants with a positive predictive value of 94%; we show
strong enrichment of predicted deleterious mutations across pan-cancer drivers. We also achieve
improved patient survival estimation using a proposed set of novel cancer-involved genes. Ultimately,
this pipeline enables accelerated insight-gathering of sequence-specific consequences for a class of
understudied mutations and provides an efficient way of filtering through massive variant datasets –

functionalities with immediate experimental and clinical applications.

Advancements in sequencing technology havemade extensive collections of
mutations and genomic information available1–4. These datasets include
millions of novelmutations that cannot all be experimentally studied due to
time and cost constraints. Thus, most investigations that characterize
functional variants focus onnon-silent, non-synonymousmutations5,6. This
heuristic effectively narrows the search space yet neglects thousands of
apparently silent mutations with measurable and potentially more severe
consequences. Instead of directly altering coding nucleotides, silent and
apparently silent mutations act on regulatory gene expression processes6–10;
they can exist within introns and untranslated regions, or within coding
sequences (CDS)3–11, and they hold significant predictive power in cancer
classification and prognosis11. Among the regulatory mechanisms that they
can hijack is splicing9,12–25.

mRNA splicing is a co-transcriptional modification step that trans-
forms one pre-mRNA sequence into multiple transcripts through alter-
native splicing (AS). The most crucial cis-elements needed for proper
splicing are the intron’s 5′ (donor –GUmotif) and 3′ (acceptor –AGmotif)
junctions. There are also hundreds if not thousands of sequence determi-
nants farwithin andbeyond the intron that aremoredifficult to characterize

and play roles of varying importance in deciding which GU/AG dinucleo-
tides serve as functioning splice sites26. Ultimately, this gives cancerous
apparently silent mutations countless targets through which they can dis-
rupt healthy gene expression.

Numerous examples illustrate the impact of aberrant splicing in
cancer15,27–29. One estimate claims that between 15% and 50% of human
disease mutations can result in splicing dysregulation24. It was found that
68% of tumor samples contained at least one aberrant splicing-derived
neoepitope while only 30% contained neoepitopes derived from somatic
single-nucleotide variants30. Exons 4, 6, and 9 of TP53 contain functional
hotspots for intron retention-caused inactivation by SNVs, and mutations
causing such effects are visible in lung squamous cell carcinoma31. The
Warburg effect exercised by some tumors depends upon a shift in expres-
sion from adult-observed pyruvate kinase isoforms to embryonic-observed
splicing patterns15,31–33. Even tumor drug resistance is linked to splicing, as
shown with a vemurafenib-resistant isoform of BRAF that is lacking exons
4–823,34.

Due to the clear relevance of splicing in cancer and other disease
phenotypes, several pathogenicity predictors related to splicing have been
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published. These include tools such as CADD35, MMSplice36, TraP37,
IntSplice238, RegSNPs-Intron39, RegSNPs-Splicing40, and S-CAP41; these
models typically employmachine learning (ML), use training procedures to
classify deleteriousmutations based on a priori knowledge of pathogenicity,
provide limited mechanistic insight, and are constrained to specific muta-
tion types and regions. These tools can help identify likely pathogenic
mutations but offer limited information related to the functional char-
acteristics and splicing events that make their detected mutations
deleterious.

To computationally elucidate mutations’ effects through missplicing,
we propose Oncosplice. This pipeline predicts aberrant splicing events,
generates variant transcriptome annotations, constructs resultant pro-
teomes, and provides a measure of pathogenicity based on estimated
functional divergence measurements between reference and aberrant pro-
teins.We demonstrate that the tool capturesmultiple meaningful signals in
a large set of somatic, unannotated mutations obtained from The Cancer
Genome Atlas (TCGA) Program, can outperform other splicing-related
pathogenicity predictors onClinVar variants, and improves patient survival
estimation.

Results
Approximately 1.3% of all somatic mutations in cancer patients
may cause aberrant splicing
We analyzed 12,250,236 unique somatic mutations across 9874 genes from
8362 patients with any of 19 cancer types accessed from and curated by
TCGA, as seen in Table 1. We found that 159,458 variants result in at least
one predicted missplicing event. Specifically, these mutations induced
51,066 missed acceptors, 43,924 missed donors, 40,844 discovered accep-
tors, and26,463uniquediscovereddonors. 64,368mutations resulted in two
or more missplicing events. Moreover, 8179 missplicing mutations receive
Oncosplice scores ≥2000 (top 5th percentile), a threshold representing
variants with especially deleterious changes to the proteome. We refer to
these variants as predicted deleterious mutations. We estimate that at least
1.3% of somatic variants in tumors result in some missplicing.

The most easily identifiable missplicing mutations are those that alter
core splicing motifs, and, as can be seen in Fig. 1A, splice site mutations
account for 62,047 or 38.9% of all predicted missplicing mutations.
Meanwhile, of all 65,171 splice site mutations analyzed, 3124 were not
detected to cause missplicing. They are likely missed since many splice sites
are used alternatively; as non-constitutive junction usage is correlated with
lower SpliceAI probabilities26, the deletion of such splice sites would be
characterized by changes in SpliceAI probability that are smaller than the
detection threshold used. We can see where splice site-deleting deleterious
SNVs reside relative to their deleted junctions in Fig. 1D, and among
acceptor-deleting mutations, 55% exist at the splice site they delete. How-
ever, among donor-deleting variants, only 33% reside at the splice site they
delete, 26.8% aremissensemutations one nucleotide into the exon from the
deleted donor, and 22.7% reside more than 7 nucleotides upstream of the
site; while selection of splice site mutations as deleterious is significant
(p value: 0.018, 0.006 for acceptors and donors respectively), there are
several interesting mutations outside the focus of splice junctions.

Therefore, understanding splice site mutations alone does not adequately
represent the space of meaningful missplicing mutations.

Splice region mutations (within 3–8 bases of the intron or within 1–3
bases of the exon) and non-silent coding variants also account for 67,068
missplicing variants. Of those, 36,030 are missense mutations (16% of
predicted missplicing mutations), also seen in Fig. 1A, demonstrating how
the most widely examined class of mutations may have secondary con-
sequences related to splicing beyond their conspicuous and distracting
amino acid exchanges. 8556 nonsense mutations (5% of missplicing
mutations), which generate early termination codons, also result in mis-
splicing which possibly neutralizes their otherwise truncating effects via
partial or full exon skipping and intron retention. For example, one iden-
tified insertion mutation induces an early stop codon but also contains a
cryptic donor site within the context of the inserted sequence. The cryptic
donor relegates the stop codon to a novel intronic region and preserves the
rest of the protein while only deleting a segment of 2 amino acids. This
mutation affects six patients with thyroid cancer and is not seen in the
general population.

Interestingly, 8417 intronicmutations were found to delete at least one
splice site, while 16,776 intronic mutations were found to generate at least
one cryptic splice site. Detection fidelity decays for deeper intronic variants
when using whole exome sequencing (WES), and this class is likely
underrepresented in this study. Still, intronic variants accounted for 13.54%
of missplicing variants and 673 (8.2%) of deleterious variants, further
highlighting the functional value of understanding intronic mutations in
disease. Finally, silent exonic variants, which are very easily overlooked,
accounted for 5479 missplicing mutations and 109 predicted deleterious
variants.

Predicted misspliced transcripts agree with isoforms causally
linked to mutations in RNAseq-based studies
Several computational investigations have estimated the causal relation
between somatic SNVs and missplicing events such as cryptic splice junc-
tion creation, exon skipping, and intron retention. This can be done by
isolating genes with single mutations and detecting aberrantly spliced reads
viaRNAseq. In these investigations, thousandsofmutationswere connected
to specific splicing outcomes using allele-specific or ratio-based splicing
analysis31,42 or junction allele fractions (JAF)43.

First, we processed 1152mutations that were reported byMiSplice43 to
induce novel intronic splice junctions. After lifting the novel splice sites to
the hg38 genome build, we checked these cryptic splice junctions to those
predicted computationally with Oncosplice. Out of 1152 variants, 109
mutations were not predicted to cause missplicing. The remaining 1043
(90.54%) mutations were found to cause a cryptic splice site at a SpliceAI
threshold of 0.25, and the MiSplice-identified position was always <3
nucleotides from the computationally predicted site. Of those, 723 variants
caused a single cryptic acceptor while 313 caused a single cryptic donor, and
7 variants caused both a cryptic donor and acceptor together. Furthermore,
each mutation had JAF describing the proportion of reads mapped to a
relevant transcript region that expressed the cryptic splice junction. These
splice junction JAFs significantly correlatedwith computationally predicted
probabilities, as canbe seen inFig. 2A,B.Thisfinding reinforces theutility of
SpliceAI probabilities as proxies for splice site penetrance.

Next, we compared the results of allele-specific splicing analysis on
RNAseq data –which identified events including exon skipping (ES), intron
retention (IR), partial exon skipping (PES), and partial intron retention
(PIR) – to the transcript isoforms estimated and constructed byOncosplice.
Specifically, we analyzed 761 mutations identified through ratio-based
splicing analysis31, 219 mutations identified through allele-specific
association31, and 267 close intronic, 459 splice site, 286 exonic, and 228
deep intronic variants identified using a combination of read-ratios and
allele specificity42. Of these mutations processed, we retained for analysis
those that were predicted to induce a missplicing event at a detection
threshold of 0.25. Since Oncosplice predicts multiple isoforms, for each
variant we recorded whether Oncosplice predicted the event detected in

Table 1 | Statistical summary of analyzed data

Gene coverage 9879

Total mutations 29,046,307

Total unique mutations 12,250,236

Cancer types 19

Variant classifications 17

Mean mutations per gene per patient 1697

Mean unique mutations per gene 1240

Total cases 16,728
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Fig. 1 | Reference dataset statistics. A The proportion of all mutations per variant
classification that are retained in the missplicing and deleterious missplicing subsets
reveals that predicted deleterious mutations come from all regions, and more sig-
nificantly from splice sites. B A plot describing the distribution of variants per gene
per patient shows that typically genes have between 1 and 2 mutations. C A
breakdown of the cancer types analyzed and how many patients each project
includes, with BRCA being the largest in terms of cohort size; the number of cancer-
specific deleterious mutations in each cancer type is also displayed (cancer-specific
mutations are variants found only among patients with one cancer type).DMost of

the deleterious mutations that induce a missed acceptor fall on or around the splice
site motif, as do most of the mutations that induce a missed donor, though there are
several variants that disrupt both junctions from hundreds of nucleotides away.
E The proportion of all unique mutations in each variant type category in the TCGA
set available and in the predicted deleterious subset indicates that most somatic
mutations analyzed are SNVs, while insertions seem to proportionally induce more
splice site alterations as is indicated by their higher composition among deleterious
variants.
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Fig. 2 | Benchmarking Oncosplice predictions using RNAseq and allele fre-
quencies. A, B Plotting the junction allele fraction for cryptic splice sites induced by
variants against their SpliceAI probability reveals a significant correlation between
the latter and discovered splice junction penetrance (asmeasured using RNAseq and
MiSplice); we used a SpliceAIdetection threshold of 0.25 and any sitewith a change in
penetrance below this is not detected. Moreover, we only observed the positions for
which the lifted hg38 coordinate of the MiSplice-identified cryptic splice site was
within 3 nucleotides of the SpliceAI-identified cryptic splice site. CWe calculate the
discovery ratio as the proportion of splicing events identified in two separate
RNAseq-based computational investigations that were properly predicted by

Oncosplice. D A depletion of variants occurring in the general population among
predicted deleterious mutations indicates the added insightOncosplice generates on
top of simply identifying missplicing mutations with SpliceAI. E We analyzed the
mean Oncosplice score of variants binned based on gnomAD MAF into similarly
sized sets (~1.4E4 mutations per bin) and reveal a significant correlation. F The
mean gnomAD MAF is significantly lower among predicted deleterious variants
than amongmissplicing variants, and significantly lower amongmissplicing variants
than among non-missplicing variants.GA splice site mutation inMET’s 10th intron
results in a skipped exon and deletes a large part of the protein’s functional domain.
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RNAseq. As summarized in Fig. 2C, in 11 of 20 categories, Oncosplice
identifiedmore than 70%of the isoforms observed. Events induced by splice
site mutations are most effectively reconstructed, in large part due to the
increased prediction fidelity that SpliceAI provides closer to splice junctions.
This is significant, considering Oncosplice produces these estimates fully
computationally. Splice site usage andRNAseqdata arehighly dependent on
factors such as source tissue type, making it likely that many other isoforms
predicted withOncosplice exist and were simply not visible in theseRNAseq
experiments.

To understand the events detected by Oncosplice more tangibly, we
explore two relevant and documented case studies. First, we considerMET,
which encodes a receptor protein kinase and is a well-known cancer driver.
MET is represented in the TCGA dataset by 2062 unique mutations. Of
those, 34mutations (1.65%) are predicted to result inmissplicing,while only
one is scored as pathogenic by Oncosplice: chr7:116739948 A > T. This
variant is predicted to destroy the canonical acceptor of the 10th intron and
partially destroy the canonical donor of the 11th intron in MET’s primary
transcript.Oncosplice’s predicted outcome of this event is exon 11 skipping,
which otherwise preserves the protein but deletes 73 amino acids that map
to a TIG functional domain. Interestingly, this mutation affects 11 patients,
10 of whom belong to the GBM (glioblastoma multiforme) cohort. This
variant is classified as likely benign in ClinVar and COSMIC, and is asso-
ciated with renal cell carcinoma, but we found no experimental data or
functional evidence describing thismutation’s effects, indicating it has likely
not yet been studied. Another set of 14 unique mutations in the vicinity of
MET’s 14th intron (a knownhotspot for exon skippingvariants) is predicted
to delete the nearby donor site and ultimately result in full or partial exon
skipping leading to a loss-of-function event. These mutations did not meet
the established Oncosplice threshold for pathogenicity. Out of 15 patients
affected by thesemutations, 10 belong to the LUAD(lung adenocarcinoma)
cohort, a pathology that is well-linked to MET exon 14 skipping44. We also
processed a KRAS variant known to be involved in Osimertinib-resistant
lung cancer: chr12:25227343G>T. This mutation causes an amino acid
substitution with gain-of-function effects through activation of ERK1/2
activation and RAS-GTP44. Yet, this same mutation was experimentally
found to induce a cryptic splice site which causes a frameshift and protein
truncation wherein the c terminus of the resulting proteins was minimally
detectable using antibodies44. This event is captured quickly and effectively
by Oncosplice. The cryptic splice donor is highly penetrant (SpliceAI Delta:
+0.744) and theprotein truncating event is constructed andpredictedas the
primary isoform with a score of 1,154. Similarly, Oncosplice detected 33
missplicing mutations out of 202 unique variants surrounding exon 4 of
TP53 – another known hotspot – that resulted in partial or full exon
skipping.

Predicted deleterious missplicing mutations are significantly
depleted within the general population
WeusedVEP to annotate all SNVs anddeletionswith combinedpopulation
allele frequency (AF) data from the 1000 Genome Project3 and gnomAD45.
Frequencies associatedwith these TCGAmutations vary significantly; some
are de novo (they are not previously studied or seen in either of these
auxiliary sets), while 2.49% of somatic SNVs are observed as the primary
allele in the general population (somatic variants are alleles that differ in
tumor samples relative to healthy cells from a single cancer patient so, while
rare, a patient’s alternate allele can be predominant in the general popula-
tion). We expect that some mutations found within the general population
can be deleterious46 and that a vast proportion of variants found in cancer
patients are passengers rather than drivers, though typically deleterious and
benign variants have lower and higher AFs, respectively. Among all somatic
mutations studied, 2.69M variants are found at non-zero AFs in gnomAD.
These variants are diverse across all descriptors.

First, we tested the depletion of variants occurring in the healthy
population within the missplicing and predicted deleterious subsets of
variants, a concept illustrated in Fig. 2D.Of the 144,652missplicing variants
with AFs, only 8402 are seen in the healthy population (permutation test

mean: 33,440, permutation p-value: < 0.001, hypergeometric p-value: <2.3E-
308, Chi-square p-value: <2.3E-308) indicating that missplicing mutations
aremore frequent inpathologies than in the healthypopulation.Of the 7223
deleteriousmissplicingmutations withAFs, only 271 are seen in the general
population (permutation test mean: 420, permutation p-value: <0.001,
hypergeometric p-value: 2.57E-16, Chi-square p-value: 6.37E-14), a strong
depletion calculated against themissplicingmutation set which implies that
Oncosplice scores contribute significant additional information past pre-
dicting the occurrence of aberrant splicing. Missplicing variants not seen in
the general population receive more pathogenic scores than healthy-
observed missplicing mutations (difference: 132, permutation random
mean:−0.002, p-value: <0.0001,WilcoxonRank Sum: 8.66E-83). As seen in
Fig. 2E, F, there is also a significant negative correlation between gnomAD
AFsandmeanOncosplice scores. Sincewe expect thatmissplicingmutations
in the healthy population would generally have less severe disease-related
effects, this further suggests that Oncosplice scores accurately convey the
nature of a variant’s functional consequences.

Oncosplice outperforms alternative splicing-related pathogeni-
city predictors and provides actionable insights
Our next aims are to measure the predictive value that Oncosplice’s func-
tional divergence algorithm provides in terms of capturing deleterious
changes to proteins, benchmarkOncosplice scores using other pathogenicity
predictors, and establish a threshold that can be used to define deleterious
mutations from Oncosplice scores. To this end, we download 1,475,305
mutations from the ClinVar dataset to analyze the significance of Oncos-
plice’s pathogenicity predictions against clinically validated pathogenicity
associations47–49. Of those, 398,489 mutations overlapped our processed
TCGA variants. We graded all these variants using Oncosplice’s functional
divergence algorithm, including those that do not result in predicted mis-
splicing. As can be seen in Fig. 3B, 8.81% of these variants are labeled as
pathogenic or likely pathogenic while approximately 48.5% are benign or
likely benign. The rest have conflicting interpretations of pathogenicity or
lack sufficient clinical evidence to assign a label. 10,833 ClinVarmutations
result in predicted missplicing. 54.0% of this pool has evidence of patho-
genicity while 6.64% are benign (permutation p-value: <0.001); predicted
missplicing variants obtain a positive predictive value (PPV) for patho-
genicity of 89%.

Many other splicing-related pathogenicity predictors have been pub-
lished. These tools typically leverage machine learning strategies, train
directly on pathogenicity classifications (often from ClinVar, information
Oncosplice inferswithout training) topredict consequences basedonapriori
knowledge of pathogenicity, provide limited to nomechanistic insight, and
are often constrained to specific mutation types (synonymous SNVs, mis-
sense SNVs) and regions (intronic, splice site, splice region)35–41. A tabular
description of these tools is available in Table 2. We compare the results
from Oncosplice as an end-to-end pathogenicity predictor to results
obtained from RegSNPs-Splicing, Reg-SNPs-Intron, S-CAP, TraP,
MMSplice, and IntSplice2.We also compare againstCADD even though it is
not a splicing-specificmodel that uses hundreds of other features relating to
motifs, conservation estimates, and evolutionary mechanisms; it also uses
features generatedwith SpliceAI andMMSplice.We scored or obtained pre-
computed sets of mutations from all alternate models. We find CADD and
Oncosplice scores share the greatest correlation, yet several models are not
highly correlated to each other, as shown in Fig. 3A, indicating some
orthogonality in splicing-related predictions.

First, we calculated PPVs for each tool at incremented percentiles to
understand prediction quality at different scores. As seen in Fig. 3C, only
MMSplice, TraP, and CADD reach levels as high as Oncosplice. We show
results forOncosplice scoreswhenmasking out variants that aren’t predicted
to causemissplicing (isolatingpredictions formissplicing variants) aswell as
for all mutations together (to understand the scoring algorithm’s capture of
functional changes). It is interesting to note that the functional divergence
score outperforms most tools and even provides a larger search space with
an equally highPPVasCADD atweaker percentiles. For a clear viewof these
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Table 2 | Splicing-related pathogenicity predictor comparison

Splicing
specific

Model type Features Prediction target Constraints

CADD No SVM & Logistic Regression 1029 True vs Simulated Variants –

IntSplice2 Yes LightGBM ~100 Pathogenicity (ClinVar) Intronic SNVs (3–50nts inside intron)

MMSplice Yes Neural Nets (MLP, CNNs) &
Logistic Regression

Sequence Context Splicing Effects & Pathogenicity
(ClinVar)

6 region specific models with unique
architectures

TraP Yes SVM 56 Pathogenicity (ClinVar) SNVs

RegSNPs-Intron Yes Random Forest 436 Pathogenicity (ClinVar) Intronic SNVs (3–50nts inside intron)

RegSNPs-Splicing Yes Random Forest ~450 Pathogenicity (ClinVar) Synonymous SNVs

S-CAP Yes Gradient Boosting Tree ~31 Pathogenicity (ClinVar) SNVs

Fig. 3 | Comparing pathogenicity predictor performances in splicing. A A
heatmap of each tool’s Spearman correlation to all other predictors; tools such as
CADD exhibit high correlation to several tools – especiallyOncosplice –while others
such as S-CAP and Oncosplice are less correlated indicating they may capture
orthogonal information. B Ratio of pathogenic, benign, and ambiguous variants
found inClinVar for subsets of top 5%of predicted deleteriousmutations using eight
pathogenicity predictors’ scores. C The positive predictive values for incremental
percentiles for each of 8 tools’ scores indicate that Oncosplice functional divergence

can generatemeaningful and narrowed search spaces on parr toTraP andMMSplice.
D ROC analysis of all the tools indicates that on the task of pathogenicity perfor-
mance, the scoring algorithm employed byOncosplice is effective, with CADD being
the only model to outperform in terms of AUC. E Confusion matrices for showing
the predictions using binary thresholds based onOncosplice scores for all mutations
and missplicing mutations, as well as the prediction quality for considering mis-
splicing mutations as pathogenic alone.
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predictions, we show the clinical significance labels associated with the
variants in the top-scoring 95th percentiles for eachmodel. As shown in Fig.
3B, no other predictor identifies pathogenic mutations at ratios as high as
with Oncosplice both for missplicing mutations and all mutations. We also
compare the performance of all tools using receiver operating characteristic
(ROC) curves, despite their being a less suitable metric for the task of
splicing-related pathogenicity identification due to the expectedly large
quantity of falsely labeled benign mutations (which are simply mutations
that are pathogenic throughmechanisms unrelated to splicing); this is done
to test the significance of Oncosplice’s scoring algorithm and its indepen-
dence of splicing. It is a fair measure as all other predictors used supervised
machine learning algorithms to directly predict ClinVar classifications and,
therefore, have seen the data we measure performance against. In Fig. 3D,
the ROC performance of Oncosplice’s protein comparison algorithm
approaches that of CADD, a state-of-the-art tool in pathogenicity predic-
tion. Notably, Oncosplice and CADD can achieve top predictive perfor-
mance without training on pathogenicity at all.

Becausewedonot use a training scheme in constructingOncosplice, we
canalsoguarantee that its performance is not affectedbydata circularity that
may affect ML-leveraging models38. Additionally, Oncosplice provides
insight into missplicing mutations that are ORF-bound and non-synon-
ymous, which no other model handles. These mutations may have dis-
tracting and direct effects on the amino acid composition but may have
secondary effects on splicing. Similarly, recent investigations point to UTR
variants’ role inmissplicing. Several of themutationsOncosplice identifies as
deleterious reside in the 5’UTR region, and because Oncosplice provides
estimated transcriptomic and proteomic libraries we can use this tool to
study their effects further. Pathogenicity prediction is well established, and
most methods offer high prediction performance, yet methodology now
becomes increasingly important as we try to computationally understand
the mechanisms through which variants are harmful;Oncosplice is the only
model considered that offers so much in this regard. Ultimately, we show
Oncosplice performs competitively in the task of pathogenicity prediction
without the central reliance on ML as a score generator, without prior
knowledge of pathogenicity, without the need for a training or optimization
scheme, andwithout variant constraints, all as a secondary task to proteome
estimation.

When looking at the setof variants thatmeet anOncosplice thresholdof
690, or in the top 95th percentile for missplicing variants, we find 542
missplicing variants, 65.5% of which are pathogenic and 4.5% of which are
benign (PPV value: 93.17%, permutation p-value: <0.001). Therefore, we

establish the top 5% of missplicing variants by Oncosplice score among
arbitrary sets of analyzed mutations as those most likely to be pathogenic.
Among the phenotypes associatedwith the pathogenicmutations identified
with Oncosplice are several cancer-related terms, including hereditary can-
cer predisposition syndrome, familial cancer of breasts, breast-ovarian
cancer, gastric cancer, and colorectal cancer.

Genes overrepresented with deleterious mutations are enriched
with known cancer drivers and reveal novel biomarkers that
improve patient survival estimates
There are several published lists of classical cancer drivers50–58. These lists are
often based on non-silent mutations, can be developed either through
computational or experimental investigations, and ultimately enable tar-
geting for treatment development. IfOncosplice functions properly, it can be
reasoned that many of those genes overrepresented with deleterious mis-
splicing mutation are known cancer drivers due to direct selection within a
cancer cohort. To this end, we search for deleterious mutation-
overrepresented genes using hypergeometric probability.

To identify significant genes while controlling for selection bias
related to total mutation volume, we group genes into 5 distinct bins
within each of which selected genes and background genes have insig-
nificantly different mutation volumes, and then rank genes in each bin by
the ratio of deleteriousmissplicingmutations to all uniquemutations.We
then scan through the top percentiles across all bins and assess the
identification of drivers.More details on this procedure are available in the
Methods. As can be seen in Figs. 4 and 5, there is a strong enrichment of
pan-cancer driver genes, which reportedly play underlying roles in mul-
tiple pathologies. We also test for the enrichment of known TSGs and
oncogenes separately using the sameprocedure and role-specific gene sets.
It is seen in Fig. 4 that TSGs are enriched more strongly than oncogenes,
indicating either that missplicing is a more typical precursor in TSG
inactivation than in oncogene gain-of-function, or that the scoring
strategy implemented better captures behaviors typical of TSG knockout.
Quantifying novel protein functionalities that cause an upregulation of
activity or change of functionality is a much more difficult task. We also
perform enrichment of pan-cancer drivers in sets of genes that are over-
represented in cancer-specific variant subsets. Moreover, we compare the
enrichment of these identified drivers against drivers identified while
checking for overrepresentation in the missplicing subset. As can be seen
in Table 3, cancer drivers are much more strongly enriched among genes
overrepresented by deleterious mutations compared to genes

Fig. 4 |The hypergeometric p-value of the enrichment of known pan-cancer, TSG, and oncogene drivers across the top ranks of overrepresented genes shows that pan-cancer
genes are better captured by Oncosplice scores.
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overrepresented by missplicing mutations, reinforcing the added value of
Oncosplice on top of SpliceAI.

Future cancer treatments and research will be directed toward genes
with strong evidence of a potential role in pathogenic mechanisms. Since it
has been shown that Oncosplice can capture the enrichment of mutations

within canonical cancer drivers and TSGs, we can also use this approach to
suggest novel cancer genes by looking at those with the highest enrichment
of deleterious missplicing events. Therefore, we propose a novel set of
potential cancer drivers. This list includes 490 terms included in the top 5%
of overrepresented genes among deleterious missplicing mutations. Out of

Fig. 5 | Clinical utility of deleteriousmissplicingmutations. AThe distributions of
mutations per gene for the sets of all genes analyzed, canonical cancer drivers, and
the proposed cancer genes show that the proposed genes come from the same
distribution as the background gene set rather than having been selected based on
trivial characteristics such asmutation volume.BWhile themutation volume for the
proposed cancer drivers is not significantly different from all genes analyzed, the
pathogenicity of the mutations found in these genes is significantly higher.

C Kaplan–Meier survival probabilities for groups of patients defined using muta-
tions within proposed cancer genes. D Kaplan–Meier survival probabilities for
groups of patients defined using mutations within canonical cancer genes.
E Kaplan–Meier survival probabilities for two groups of patients with similar
mutation volumes segmented based on having or not having deleterious mutations.
FDistribution of mutation volumes for patients in groups identified in E shows that
the patients do not have significantly different numbers of mutations.
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these proposedgenes, 49 are canonical pan-cancer drivers. Table 4 describes
the enrichment of the proposed genes. In essence, these genes can be con-
sidered vulnerable to damaging forms of missplicing events and have a role
in cancermechanisms.As seen in Fig. 5A, the proposed cancer drivers come
from the same distribution of all genes in terms of the number ofmutations
they contain, ensuring selection was not dependent on trivial factors. Many
relevant cancer-relatedmolecular functions defined by gene ontology (GO)
gene sets are strongly enriched within this gene set, including GTPase
activity (adjusted hypergeometric p-value: 6.6E-13), G-protein activity
(adjusted hypergeometric p-value: 7.4E-6), and helicase activity (adjusted
hypergeometric p-value: 1.9E-3)59. An unabridged compilation of GO-
enriched terms is available in the Supplementary Table 1.

To understand the immediate clinical utility of Oncosplice predictions
and the proposed cancer drivers, we analyzed survival estimates by identi-
fying patients with deleterious mutations across any of 375 known cancer
genes against patients without missplicing mutations in those same cancer
genes. We ran similar trials where the known cancer genes were replaced
with equally sized sets of genespulled from thenovel 490proposed genes.As
can be seen in Fig. 5C,D, the segmentation of Kaplan–Meier survival esti-
mates for patients using themodified gene list is significantly stronger. This
indicates that the novel genes may provide immediate clinical prognostic
value. Moreover, we conducted trials to control for the mutation volume
across patients by segmenting cases into two groups: those with at least one
gene affected by a deleterious mutation and those with no genes affected by
deleterious mutations. We then compare the survival probabilities for
groups of patients such that there is no significant difference between the
mutationvolumedistributions for the affected andunaffectedpatients in the
subset. In many instances, there was no meaningful difference in survival,
though when a significant difference was observed, it was the patients
afflicted by deleterious mutations that had more pessimistic outcomes.
Figure 5E shows the survival probabilities for 546 patients with between
3667 and 4116 total mutations. Patients with deleterious mutations have
significantly worse survival odds than those without. Moreover, Fig. 5F
shows that the patient groups do not have significantly different mutation
volumesand that the segmentation isnot reliant on trivial factors. In general,
data related to survival is troublesome to work with due to missing values
and worsening longitudinal record consistency. Regardless, these results
indicate that Oncosplice identifies mutations with relation to patient out-
comes. Several other analyses in which deleterious missplicing mutations
indicate poor survival are available in Supplementary Fig. 1.

Discussion
In this work, we have evaluated the signals captured by Oncosplice, a novel
pipeline with a highlighted utility in characterizing cancerous apparently
silentmissplicingmutations.We have found that themodel identifiesmany
promising patterns in the underlying data across millions of mutations, not
the least of which is competitive pathogenicity prediction based solely on
estimated aberrant proteomes. Pathogenicity prediction is well-established,
andmost methods offer high prediction performance, yet the methodology
now becomes increasingly important as we try to computationally under-
stand the mechanisms through which variants are deleterious;Oncosplice is
the only model considered that offers so much in this regard. We have also
shown that while SpliceAI is an important submodule of the tool, the
novelties of our approach add significant predictive power. While Oncos-
pliceoffers a simplewayof identifyingmutations basedonameasurementof
the difference between healthy and aberrant proteomes, we make minimal
assumptions about these scores’ precise biological significance. Despite the
unclear downstream impact of these grades, there is strong evidence sug-
gesting a large portion of missplicing events result in early termination
codons and truncated proteins due to frameshifts introduced by intron
retention, exon skipping, or alternative splice siteusage; extreme cases of this
profile are clearly involved in oncogenesis or disease progression.

When studying cancer at the genomic level, we must remember that
data is generally noisy and biased. Annotations to reference transcripts and
proteins are hardly conclusive and are frequently updated. New splice sites
are also regularly discovered. The inherent tendency ofWES to cover CDSs
while limiting the availability of untranslated regions or deep intronic
sequences also means we are missing many mutations60. In all, 98% of the
genome is technically invisible through WES, though practically, this is
complicated by unpredictable off-target effects. Ultimately, the more true
mutations available across all gene regions, the better we can characterize
possible splicing aberrations.To improve the analysis enabled byOncosplice,
an emphasis must be placed on sequencing non-exonic regions, and
increased attention must be given to genes beyond those marked as cancer
drivers, which typically have disproportionately larger quantities of verified
mutations due to the knowledge of their importance. Still, the statistical
power provided by the massive number of mutations analyzed allows
generalized insight into aberrant splicing in cancer. Moreover, the splicing-
modified gene annotations Oncosplice provides allow for rapid analysis of
focused case studies.

Oncosplice’s ability to predict and reconstruct splicing events that are
observed in RNAseq is valuable since this data is expensive and time-
consuming to develop. It is hardly trivial to estimate transcriptomes com-
putationally and while there is much room for improvement in terms of
predicting true transcripts, thoseOncosplice generates clearlyhave biological
significance. Further comparison between predicted aberrant transcripts
and those observed in RNAseq will allow for fine-tuning of the model and
may lead to isoform likelihood estimates that describe the actual usage of
noncanonical splice sites more accurately.

In evaluating this proof of concept, we were also forced to control the
testing environment and focus the scope of the investigation on mutations
in isolation. Considering the relative success, one highly relevant future
direction is to model genes with all simultaneously observed mutations
together, as their cumulative effects may change splicing patterns further.

Table 3 | Cancer driver enrichment among genes over-
represented in missplicing and deleterious missplicing var-
iant sets

Cancers affected Missplicing enrichment Deleterious enrichment

No cancers 0.9976 1

1+ cancers 0.003292 7.79E-11

2+ cancers 0.002953 9.02E-09

3+ cancers 0.003641 7.68E-08

4+ cancers 0.001603 8.9E-08

5+ cancers 0.02494 3.21E-08

6+ cancers 0.02413 1.01E-08

7+ cancers 0.05312 1.08E-09

8+ cancers 0.04587 3.78E-10

9+ cancers 0.01856 1.97E-08

10+ cancers 0.01217 4.52E-05

11+ cancers 0.008708 0.004197

12+ cancers 0.04296 0.01002

13+ cancers 0.06446 0.004017

14+ cancers 0.1778 0.001481

Table 4 | Overview of proposed cancer drivers

Proposed genes

Proposed drivers 490

Identified cancer drivers 49

Enrichment 10%

Random mean 18.548

Permutation p value <0.001

Hypergeometric probability 0.000246
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This is a task no splicing-related pathogenicity predictor is capable of.
Additionally, this tool is not limited to cancer and can be applied to any
disease or phenotype cohort, including those representing rare or neuro-
degenerative diseases. Since Oncosplice is unrestricted to any genomic
region, we can also explore mutations that no other splicing-related
pathogenicity predictor is yet able to address – UTR mutations and non-
silent variantswith dual effects. Ultimately, the proposedpipeline serves as a
convincing proof of concept showcasing the utility that modeling splicing
(and other gene expression mechanisms in general) can have in studying a
new dimension of cancer. Splicing is only one of several critical gene
expression processes highly impacted by known and unknown apparently
silent mutations. Expanding our understanding of how cancer initiates and

progresses will require a pivot in attention toward this class of variants that
have thus far eluded aggressive research.

Methods
Identifying missplicing mutations with SpliceAI
First, per-nucleotide splicing probabilities are predicted using SpliceAI, a
deep residual neural network that confidently predicts splice site prob-
abilities for each residue in a sequence based on 10,000 nucleotides of
flanking context26. The model is capable of splice-site identification with
95% top-k accuracy on arbitrary pre-mRNAs26. SpliceAI is used within
Oncosplice to identify changes to splice site usage. Whether a mutation
causes aberrant splicing can be estimated using SpliceAI in tandem with

Fig. 6 | Description of theOncosplice pipeline. AAdiagram illustrating the greedy
approach to constructing transcript isoforms given only a pool of splice sites with
predicted missplicing such as missed or cryptic junctions. B Overview of the steps
taken in the pipeline to obtain a concise quantitative description of the functional
loss that a mutation induces through predicted missplicing, and the transcriptome
annotations; general run-time per mutation consumes 7.73 seconds when running

on an Intel Xeon Platinum 9294 CPU, with 40% of the time spent running SpliceAI
inference and 60% spent predicting, generating, and grading variant transcriptomes.
C Comparing two proteins using conservation scores per amino acid using an
algorithm that captures the loss due to insertions and deletions. D A view of the
collected data for each transcript’s isoforms, and the aggregation of functional loss
scores at the transcript and gene level.
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reference genome annotations by tracking the changes in SpliceAI prob-
abilities that nucleotides and splicing junctions near a mutation experience.
The four primary events Oncosplice detects are missed and discovered
acceptors anddonor sites. For amutationof interest, if the donoror acceptor
probability of a nearby site decreases by 0.5 ormore and that nucleotide is an
annotated splice site, Oncosplice interprets a missed splice site. If the donor
or acceptor probability of a site increases by more than 0.5 and the
nucleotide is not an annotated splice site, Oncosplice interprets a cryptic or
discovered splice site. While it is possible for SpliceAI to detect splice sites
that have not been formally annotated, they are not considered as there
would be no way to assess the quality of these predictions. Higher-order
events – including skipped exons and retained intron – are inferred from
predicted transcripts.

We look for changes in splicing within a segment 2500 nucleotides
upstream to 2500 nucleotides downstream of each mutation site. Each
mutation is analyzed in isolation, regardless of other mutations that may be
concurrently observed in a gene for a givenpatient.Weuse 0.5 as a threshold
for missplicing detection, a parameter that was validated based on RNAseq
data and is the recommended SpliceAI parameter26. We justify using Spli-
ceAI over alternatives such as MaxEntScan in the Supplementary
Discussion.

Modeling variant transcriptomes and proteomes
Each mutated gene considered by Oncosplice has reference genome anno-
tations describing the blueprints for constructing its mature mRNA tran-
scripts and proteins. This data is freely accessible from the Ensembl
annotation database. Because SpliceAI does not consider the schema of all
transcripts anddonor-acceptor configurations that arebiologically observed
in each gene, it is not obvious how splicing events can be incorporated into
transcripts. Consider, for instance, the simple case of two adjacent cryptic
donors.

We use a greedy algorithm that operates on minimal assumptions to
handle these situations. This method takes as input a pool of splice sites –
reference and predicted alike – that reside within a pre-mRNA transcript’s
boundaries. The algorithm follows four rules:
1. Introduce and connect adjected nodes sequentially from 5’ to 3’.
2. Splice sites of the same type cannot be connected.
3. Adjacent splice sites of the same type are equal but exclusive options for

connection continuation.
4. Generated splice paths must start with a donor and end with an

acceptor.

These guidelines provide an effective construction strategy that is not
dependent on unavailable experimental knowledge. The algorithm is not
forced to create a single speculative isoform but can generate multiple
possiblemRNAtranscript options, as illustrated inFig. 6A. In fact, due to the
dynamic and stochastic nature of splice site usage, multiple variant tran-
scripts may be produced, albeit at varying levels. This algorithm handles
splice sites at the transcript level and does not require information regarding
mutually exclusive exons, cassette exons, or documented alternative
boundary usage. Once a mature mRNA transcript is defined, translation is
modeled computationally. We consider additional influences from mRNA
decay mechanisms61,62 and alternative translation initiation site (TIS)
usage63. Depending on the placement of a discovered site, the span of the
transcript may be increased several times over, creating a very long, non-
sensical exon. The biological likelihood of such an event occurring is quite
low, and even in the case that it was generated by the splicing process, there
would likely be some decaymechanisms that would suppress the lifespan of
such abnormal transcripts. Transcript isoforms with novel exons longer
than 2000 nucleotides are discarded to account for this. This threshold was
selected based on the knowledge that less than 1% of reference human-
observed exons exceed 2000 nucleotides in length.

After obtaining variant mature transcripts, the last major gene
expression step is translation. Each transcript in the dataset contains one

canonical translation initiation site (TIS) and one canonical translation
termination site (TTS). Translating predicted mRNAs may seem trivial.
However, untranslated region (UTR) boundaries available in reference
transcript annotationsmaynot be usable in variant transcripts. If a reference
TIS is disturbed, then a new site is predicted using TITER63, a deep learning
model that predicts optimal TISs based on sequence context, as well as
Kozak context score and RNA folding energy. In the case that the reference
termination codon is interrupted, or an upstream frameshift renders it
unusable, a new TTS is defined by finding the first in-frame canonical
termination codon.

Quantifying the functional divergence of aberrant proteins
Global pairwise alignment provides a good proxy for measuring the simi-
larity between a healthy and predicted variant protein, such as those pre-
dicted byOncosplice. In the context of this investigation, a proper alignment
must be selected carefully. In aberrant splicing, blocks of nucleotides are
apparently inserted or deleted. We consider this by increasing the cost of
opening gaps in the pairwise alignment while minimizing the cost of
extending gaps. Biopython’s pairwise alignment functions are used; we
assign one point to aligned amino acids, deduct one point frommismatched
amino acids, deduct three points upon gap opening, and deduct no points
when extending gaps64. Moreover, gaps aligned to the end of the reference
protein are not penalized so that truncating events are more visible to the
algorithm. These parameters prevent ad-hoc alignments with multiple
illogical gaps and mismatches that serve only to maximize the
alignment score.

While effective, pairwise alignment is naïve since different amino acids
in a protein are of varying importance. Certain residues play crucial roles in
protein structure or function, and others are involved in neither.Oneway to
ascertain the important domains in a protein is via evolutionary con-
servation. Such an approach uses the entropy observed for each amino acid
residue in aligned homologous proteins to estimate variability and infer
functionality. We use Rate4Site – a probabilistic evolutionary conservation
score calculator that uses Bayesian estimation to obtain relative mutation
rates for each position in a multiple sequence alignment (MSA) of homo-
logous proteins based on phylogenic trees65. We used Rate4Site to process
amino acid MSA files for 100 organisms aligned to reference human pro-
teins obtained fromUCSC’s database66, resulting in a database of per-amino
acid evolutionary rates for 109,951 human proteins.

As seen in Fig. 6C, using pairwise alignment, we can determine the
exact positions that are deleted, inserted, and mismatched between the
reference and variant protein. Using conservation scores, we can more
accurately weigh each position’s importance in the reference sequence. In
calculating the magnitude of the functional divergence between two pro-
teins, we consider W as a typical protein domain length. This value was
obtained by taking the median of all functional domains across available
proteins accessible through InterPro67 – 75 amino acids.Dw is defined as the
length of a detected deletion and Iw is defined as the length of a detected
insertion. C(i,W) is the mean conservation score of a window of lengthW
surrounding a position i in the protein.

C i;Wð Þ ¼ 1
W

�
XiþW

2

i�W
2

C j
� �

ð1Þ

C* (W) denotes themaximalmeanconservation scoreof awindowof length
W in the analyzed protein.We let cði;WÞ denote C i;Wð Þ

C� Wð Þ, the normalized and
smoothed conservation vector.

C� Wð Þ ¼ max
i

C i;Wð Þð Þ

c i;Wð Þ ¼ C i;Wð Þ
C� Wð Þ ð2Þ
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Next, we calculate the value of the deletion-derived functional loss for
the deletion of Dw at position i as:

Sdel ið Þ ¼ max 1;
Dw
W

� �
� cði;WÞ ð3Þ

Then we obtain the insertion-derived functional change for the dele-
tion of iW at position i as:

Sins ið Þ ¼ max 1;
Iw
W

� �
� c i;Wð Þ ð4Þ

The total penalty for all the deletions and insertions observed in a
particular protein is computed using a sliding window of sizeW conflating
across deletion and insertion penalties as follows:

S ið Þ ¼
XiþW

2

i�W
2

Sdel j
� �þ SinsðjÞ ð5Þ

The final score for the respective protein comparison is taken as the
maximum value of the penalty vector.

Spathogenicity ¼ max
i

S ið Þ ð6Þ

This algorithm is applied to each transcript isoform for a mutated
gene. To aggregate these scores into one concise variant descriptor, we
implement a weakest-link strategy that obtains the average score for each
transcript of a mutated gene across all its predicted isoforms and then
assigns the highest score across those transcripts to the mutation. This
strategy, shown in Fig. 6D, describes amutation by themost dysfunctional
protein it generates.

Benchmarking Oncosplice using allele frequencies
Toquantify the significanceof the overlapbetween themissplicingmutation
dataset and the null dataset, we first find the overlap, or the number of
mutations in the missplicing subset that also occur in the null mutation set:
Nnull

missplicing . The total number of true missplicing mutations in our variant
dataset is denotedasNmissplicing . Thepool of all uniquemutationsobserved in
the full variant dataset is Sunique: For permutation testing, we perform 1000
iterations of the following procedure:
1. Create a randomized subset of mutations by selecting Nmissplicing

mutations at random from Sunique. This is our fake, randomized subset
of missplicing mutations.

2. For iteration i, Nfake
missplicing ið Þ is the quantity of mutations in the ran-

domized missplicing mutation set that also occur in the null dataset.

The number of missplicing mutations we expect to occur in the null
dataset by chance is themean of allNfake

missplicing values. The p value of the true
Nnull

missplicing quantity is the number of iterations for whichNfake
missplicing is equal

or smaller than Nnull
missplicing , divided by the number of conducted iterations.

The hypergeometric probability of obtaining an equal or smaller
overlap in null observed mutations within the missplicing subset is com-
puted using the following equation:

Phypergeometric ¼
XNnull
missplicing

i¼0

Nnull

i

� �
� Nunique�Nnull

Nunique�Nnull�i

� �

Nunique

Nmissplicing

� � ð7Þ

Nnull
missplicing = number of mutations that are missplicing and in null set

Nnull = number of null occurring mutations
Nunique = number of unique mutations in whole dataset
Nmissplicing = number of missplicing mutation

We perform similar permutation and hypergeometric tests when
gauging the significance of null depletion in the deleterious missplicing
subset, only differing in the set from which we sample our random muta-
tions (we test the depletion relative to the missplicing subset in order to
isolate the novel components without SpliceAI). Similar procedures are
conducted several times across this investigation.

Benchmarking Oncosplice using clinical pathogenicity
ClinVardata are parsed and binned into a set containing variant-identifying
features (chromosome, mutation position, reference allele, and variant
allele) along with their clinical significance and associated disease ontology
terms. Clinical significance terms can take on several values though we
retain only those with the following tags: “pathogenic”, “likely pathogenic”,
“pathogenic/likely pathogenic”, “benign”, “likely benign”, “benign/likely
benign”, “uncertain significance”, and “conflicting interpretations”. For
simplicity, all values are grouped into “pathogenic” (terms 1–3), “benign”
(terms 4–6), or “ambiguous” (terms 7–8) categories.

A joiningoperation is conductedbetweenourunique cancermutations
and the ClinVar data on the variant-identifying features. We now have
available three distinct ClinVar associated variant sets: unique mutations,
missplicing mutations, and deleterious missplicing mutations. For each
subset we determine the number of benign, ambiguous, and pathogenic
variants. We also calculate the ratio of pathogenic to benignmutations. We
measure the success of each subset by the magnitude of this metric.

The significance associated with the pathogenic-to-benign ratio in the
missplicing subset is defined by permutation testing; we randomize equally
sized subsets of variants by sampling from all unique ClinVar-overlapping
mutations and check how many randomizations result in a pathogenic-to-
benign ratio that is equal or greater. The statistical significance associated
with the deleterious missplicing subset is calculated similarly by sampling
from the missplicing subset in order to isolate the power of Onco-splice
novelties from SpliceAI’s predictive power.

Comparing Oncosplice to other pathogenicity predictors
We compare the performance of Oncosplice against seven alternative
pathogenicity predictors, six of which are splicing-specific. To this end, we
obtained pre-computed sets of mutations for CADD, S-CAP, TraP, and
IntSplice2. MMSplice, RegSNPs-Intron, and RegSNPs-Splicing did not have
sets of pre-computed mutations available, so inference was performed on
relevant subsets of theClinVar dataset. The ROC for each tool was obtained
usingPython’s sklearn library. Thepositivepredictive value (PPV) for sets of
mutations was obtained by taking all the true pathogenic variants among
deleterious classifications and dividing that value by the size of the set of
deleterious classifications. Correlations between any two tools were
obtained by taking the subset of intersecting variants between those tools
andfinding thePearson correlation between the scores of those variants. For
tools that grade orthogonal variants,we see that there is no correlation value.
For example, RegSNPs-Intron and RegSNPs-Splicing cannot grade the same
variants; hence, no correlation is obtained.

Measuring driver gene enrichment
To first obtain a baseline estimate as towhether cancer genes contain higher
ratios of deleterious mutations compared to other genes, we calculate the
significance of the average ratio of deleterious mutations to unique muta-
tions across cancer genes and compared that value to non-cancer gene
ratios.

We employ permutation testing by performing the following proce-
dure 10,000 times:
1. For eachgene g, calculate the rate of deleteriousmutations asRdel

g ¼ Ndel
g

Ntot
g

where Ndel
g is the number of deleterious mutations in g and Ntot

g is the

number of total mutations in g.

2. Obtain themean of all Rdel
g for known cancer genes and call this Rdel

cancer
3. Randomize a group of genes of sizeNcancer whereNcancer is the number

of known cancer genes used in Step 2.
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4. Obtain the mean of the randomized gene group’s Rdel
g in iteration i,

called Rdel
randomðiÞ.

After performing these steps, determine how often these randomiza-
tions result in Rdel

random that is greater than or equal to Rdel
cancer by calculating:

p val ¼
Piterations

i Rdel
random ið Þ≥Rdel

cancer

� �
iterations

ð8Þ

Our objective is to validate Oncosplice’s ability to identify cancer-
driving mutations by showing that genes disproportionately over-
represented among deleterious missplicing mutations are enriched with
known cancer genes. Yet, known cancer genes have more mutations than
non-cancer genes and this bias must be addressed. Therefore, to find genes
that are overrepresented by deleterious mutations while mitigating muta-
tion volume bias, we design the following procedure which operates on any
arbitrary pool of mutations.
1. Wedetermine thenumber of uniquemutations for eachgene–Nunique.

Based on this count, we divide genes into 5 quantile groups having
similar mutation volumes.

2. For each gene, we determine the count of missplicing (Nmis) and
deleterious missplicing (Ndel) mutations and further develop these
values into missplicing and deleterious missplicing mutation ratios as:

Rmis ¼
Nmis

Nunique
Rdel ¼

Ndel

Nunique
ð9Þ

3. Within each quantile group, we sort genes based on one of the target
ratios. To study, say, the top 5% of all overrepresented genes in the
deleterious subset (as is done to identify the proposed set of novel
cancer drivers), we select the top 5%of genes from each quantile based
on Rdel .

Once a set of overrepresentedgenes is obtained, the level of cancer gene
enrichment can be obtained using permutation and hypergeometric testing
as described previously. We follow a similar strategy when finding cancer-
specific enrichment by performing this procedure on the sets of mutations
found in each cancer type. We track the genes that are overrepresented in
cancer type and then count the total projects that each gene is found to be
overrepresented in.

Estimating patient survival
To show the clinical value of the proposed cancer genes andOnco-splicewe
generate two sets of patients: one defined as the affected case set and one as
the unaffected case set. In one survival analysis, the affected case set is
determined by finding all the patients in the cohort who have one deleter-
ious mutation in a defined set of cancer genes. The unaffected case set is
determined byfinding all the patients in the cohortwhohave nomissplicing
mutations in the same defined set of cancer genes. The set of cancer genes in
the control experiment is defined as 375 knownpan-cancer genes. The set of
cancer genes in the variable experiment is defined as a random set of 375
genes from the proposed cancer gene set (we sample 375 genes randomly to
ensure that there is no bias related to the size of the gene set. For each
experiment (or set of affected and unaffected patients), we calculate the
survival rates and the significance of their differences for 10- or 12-year
survival using Kaplan Meier survival estimation. This analysis is robust to
changes in the size of the gene set and the length of survival time. The
significance of the test set is always stronger than the control set, regardless
of the subset of 375 proposed cancer genes selected.

In a second survival analysis, we aim to validate identified deleterious
mutations while controlling for bias related to mutation volume in the
selection of patients for each group. To this end, we generate two sets of
patients: those who contain at least one gene affected by a deleterious
mutation and those who are not affected by a deleterious mutation. These
two sets of groups have a very strong difference in the distribution of

mutation volumes, with the affected patients containing many more
mutations than the unaffected case group. To understand if the signal
persists when eliminating the mutation volume bias, we look at subsets of
patients that contain no significant difference in their distributions of
mutation volumes by binning based on percentiles.

Identifying gene ontology terms
Gene enrichment analysis was performed using g:Profiler59, a web tool that
performs hypergeometric enrichment analysis for a target gene set against a
background gene set using a database of GO terms and their associated sets
of terms. The primary list of genes was defined as the set of proposed novel
cancer drivers. The background set is defined as all the geneswithmutations
that were studied. After running the analysis, g:Profiler provides adjusted p
values for each identified term. This tool is updatedwith the latestGO terms
and sets.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data used in this study was generated by The Cancer Genome Atlas
(https://www.cancer.gov/tcga) and can be downloaded from the genomic
data commons (https://portal.gdc.cancer.gov/). MSAs were accessed from
UCSC (https://hgdownload.soe.ucsc.edu/downloads.html#human).
Genome annotations were accessed from Ensembl (https://www.ensembl.
org/info/data/ftp).

Code availability
The source code for runningOncosplice available at http://www.cs.tau.ac.il/
~tamirtul/OncoSplice.
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