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Abstract. P-glycoprotein, encoded by the MDR1 gene, is an ATP-dependent
pump that exports various substances out of cells. Its overexpression is related
to multi drug resistance in many cancers. Numerous studies explored the effects
of MDR1 variants on p-glycoprotein expression and function, and on patient sur-
vivability. T1236C, T2677G and T3435C are prevalent MDR1 variants that are
the most widely studied, typically in-vitro and in-vivo, with remarkably incon-
sistent results. In this paper we perform computational, data-driven analyses to
assess the effects of these variants using a different approach. We use knowl-
edge of gene expression regulation to elucidate the variants’ mechanism of action.
Results indicate that T1236C is correlated with worse patient prognosis. Addi-
tionally, examination of MDR1 folding strength suggests that T3435C potentially
modifies co-translational folding. Furthermore, all three variants reside in potential
translation bottlenecks and likely cause increased translation rates. These results
support several hypotheses suggested by previous studies. To the best of our knowl-
edge, this study is the first to apply a computational approach to examine the effects
of MDR1 variants.

Keywords: MDR1 · synonymous variants · gene expression · cancer evolution ·
mRNA folding selection

1 Introduction

P-glycoprotein (p-gp) was first discovered in 1976, where it was shown to alter drug
permeability in Chinese hamster ovary cells [1]. Ensuing extensive studies unveiled
ample information about the structure and function of this transmembrane protein; P-
gp is a member of the ATP-binding cassette transporter superfamily [2]. It is a 170
KDa molecule that is comprised of two halves with high homology, each containing six
transmembrane domains (TMD) and a single nucleotide-binding domain (NBD) [3]. P-
gp is interleaved in the cell’s membrane and functions as anATP-dependent efflux pump,
exporting diverse substances out of the cell. Lipids, steroids, xenobiotics, various drugs
and chemotherapy agents are some of the molecules transferred by this protein [4]. P-gp
is normally highly expressed in the adrenal glands, kidneys, liver, the gastro-intestinal
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tract and the blood-brain barrier [5]. It protects the body from deleterious substances
by excreting them to the gut lumen, urine and bile, and by reducing permeability of
sensitive tissues [6]. P-gp is also highly expressed in many cancer cells. Its ability to
export substrates that vary greatly in chemical structure and size makes it fundamental
for the multi-drug resistance (MDR) mechanism [7] of cancer cells.

P-gp is encoded by the MDR1 gene, also frequently called ABCB1. It is located
on chromosome 7 and encodes for a protein of 1,280 amino acids [8]. MDR1 is highly
polymorphic, with over 50 single nucleotide polymorphisms (SNP) currently discov-
ered in its coding region [9]. Three variants are the most extensively studied - T1236C
(rs1128503), T2677G (rs2032582) and T3435C (rs1045642). T1236C is a synonymous
variant that occurs in the first NBD (at position 1236 of the coding sequence), chang-
ing the codon GGT to GGC (both encode for Glycine). T2677G is a non-synonymous
variant that occurs between the tenth and eleventh TMDs. It changes the codon TCT to
GCT, resulting in Serine being replaced by Alanine. Finally, T3435C is a synonymous
variant that occurs in the second NBD, causing the codon ATT to be changed to ATC but
keeping the encoded amino acid Isoleucine [10]. All three variants occur in intracellular
parts of the protein [8]. Though the frequencies vary for different ethnicities, they are
common in the general population; In fact, the alternative allele is present in 57%, 55%
and 49% of genotypes for T1236C, T2677G and T3435C respectively [11]. The three
also make a common haplotype, occurring in 33% of individuals [12].

Variants, particularly ones defined as “silent” such as synonymous alterations, can
modify the gene expression process. They can affect transcription through changing
transcription-factor binding sites (TFBS) [13]; they can impact translation and co-
translational folding (CTF) through changing codon usage [14, 15]; they can also accel-
erate mRNA degradation by changing affinity to miRNA binding sites [16] or lead to
mis-spliced proteins by modifying the nucleotides in the vicinity of donor or acceptor
sites [17]. Altogether, they can impact all phases of gene expression. Though these three
variants are widely studied, conclusions regarding their effects have been exception-
ally inconsistent [18]. Some studies suggest they change mRNA or protein expression
[19–23] while others claim they do not [24–29] and associate their presence with mod-
ifications in protein structure [24, 29]. Some find them to significantly impact patients’
response to chemotherapy and survivability while others do not [30–46]. Remarkably,
controversy is also found among those who claim that the variants do affect survivability
[47]; whether the variants are detrimental or advantageous for patient survival remains
a matter of disagreement.

The effects of these MDR1 variants on p-gp expression, function and on chemother-
apy resistance have been studied mostly in clinical trials and in-vitro cell line experi-
ments. Each method has inherent disadvantages; results of clinical trials are affected by
factors such as cohort size, patient ethnicity, tumor type and conducted chemotherapy
regimen. In-vitro experiments cannot fully mimic the symbiosis of a cell with its natural
environment and substantially differ from the corresponding cell type in-vivo [48]. Even
though the effects of the variants may vary under different conditions, it is possible that
some of the contradictions emerge not due to biological complexity but rather due to
impediments in scientific methods. The objective of this paper is to examine, for the first
time, the effects of T1236C, T2677G and T3435C on all phases of the gene expression
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process using various computational approaches. We aim to gain a better understand-
ing of the mechanism of action of this three MDR1 variants, endeavoring to propose
plausible explanations and validate some of the previously proposed effects.

2 Methods

2.1 Data Sources

For performing the various analyses, we utilized data of several known databases. Single
Nucleotide Variants (SNV) data, mRNA expression data and clinical data of TCGA [49,
50] projects was downloaded from the GDC [51] (https://gdc.cancer.gov/) on November
2021. The complete human CDSwas downloaded fromEnsembl [52, 53] (https://ftp.ens
embl.org/pub/release-109/fasta/homo_sapiens/cds/) on 2020.Human protein expression
measurements were downloaded from PaxDb [54] on 2020 (https://pax-db.org/dataset/
9606/1502934799/).

2.2 MDR1 Expression

MDR1 Expression Change of TCGA Patients. SNVs and expression data of TCGA
patients were used to examine the effects of T1236C, T2677G, T3435C and the hap-
lotypes on MDR1 expression. For each mutation or haplotype, the cohort was split to
carriers and non-carriers groups. The non-carriers groupwas randomly sampled 100,000
times such that each sampled group contained the same amount of patients as the carriers
group. The average MDR1 expression was calculated for each sampled group and used
to create a distribution of the MDR1 expression for non-carriers. The average MDR1
expression of the carriers group was compared to the distribution and an empirical
p-value was calculated.

MDR1 Expression Change According to Enformer. Enformer [55] is a state-of-
the-art model that predicts gene expression and transcription regulation based on an
extremely long input sequence (hundreds of thousands of nucleotides). Enformer was
used to predictMDR1 expression levels both for the wild type and themutated sequence,
for all three variants. As the output of Enformer is made of predictions for multiple
genomic tracks that differ in tissues and measure of gene expression, we used several
different approaches to obtain a single score from the output. For example, some of the
scores only considered tracks related to tissues where MDR1 is highly expressed, others
only considered CAGE tracks, some accounted all tracks. The same post-processing was
performed for random variants with similar characteristics (explained in the “Empirical
p-values” section) and the scores of the original and random variants were compared. If
the score of the variant was larger than the scores of 95% of the random variants it was
deemed to significantly change MDR1 expression.

2.3 Splicing Events

To examine the effect of T1236C, T2677G, T3435C on the occurrence of splicing events
we used SpliceAI [56], amodel that, given a genomic sequence, predicts the probabilities
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of each site to be a donor or acceptor site.We perform the prediction for both thewildtype
and mutated sequence, centered around each of the three variants. For each position
in the prediction range, we calculated the difference in the probability of it being a
donor/acceptor site that was caused by the variant. We searched for positions for which
the probability changed by more than 50%. Positions exhibiting an increment of more
than 50% are considered new prospective donor/acceptor sites, whereas positions for
which the probability decreases by more than 50% are regarded as potentially abolished
donor/acceptor sites.

2.4 Translation Rates

To examine the effect of T1236C, T2677G and T3435C on translation rates we utilized
several measures positively correlated with it - MFE, CAI, FPTC and tAI. We calculated
these measures for both the wildtype and mutated MDR1 CDS sequences and examined
the difference in these measures at the position of the variant.

MFE. A per-position MFE score was computed using ViennaRNA [57]; first, a sliding
window (length= 39 nucleotides, stride= 1 nucleotide)was used to obtain a per-window
MFE score. Then, theMFE score of a specific position in the CDSwas set as the average
of all MFE scores of the windows that the position is in.

CAI. Human CAI weights were computed as suggested in the original paper [58]. The
set of highly expressed genes (15% most highly expressed) was curated using human
protein expression levels from PAXdb [54].

FPTC. Human FPTC weights were downloaded from the Kazusa website [59].

tAI. tAI tissue-specific weights were taken from Hernandez-Alias et al. [60] and the s
weights were optimized as depicted in Sabi et al. [61].

2.5 Co-translational Folding

To examine the effect of T1236C, T2677G and T3435C on the CTF of p-gp, a computa-
tional model that assesses which positions in the CDS are important for correct protein
folding was deployed. The model is yet to be published and therefore we will provide
much detail about the model’s methodology. The analysis is based on the basic assump-
tion that CTF is governed by local translation rates, and that this rate is evolutionary
conserved for a position that is crucial for correct folding [62]. Thus, it searches for posi-
tions with both evolutionarily conserved low and evolutionarily conserved high MFE
(a measure correlated with translation rate) across orthologous versions of a gene. All
MDR1 orthologous CDSs (n = 383) were downloaded from Ensembl (https://rest.ens
embl.org/documentation/info/homology_ensemblgene) and were aligned using Clustal
Omega [63]. The MFE score per nucleotide position was calculated for all sequences
in the multiple sequence alignment (MSA). Then, we calculated the average MFE at
each CDS position across the different organisms. To find the positions were the MFE
score is conserved as significantly lower or higher than expected by chance, we cre-
ated two kinds of permuted versions of the MSA. In the first method (named “vertical

https://rest.ensembl.org/documentation/info/homology_ensemblgene
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permutation”), we shuffle synonymous codons within the same column of the MSA. In
the second method (named “horizontal” permutation), we horizontally swap between
synonymous codons of pairs of columns. Both methods affect the MFE scores while
keeping basic characteristics of the MSA such as the amino-acid, codon and nucleotide
content. One hundred permutations of the MSA are created for each kind. We calculate
the per-position MFE score averaged across orthologs for each permuted MSA in the
same manner as was done for the original one. At this point, for each CDS position
we have a single true MFE score and one hundred scores from each of the permuted
versions. We utilized the permutations to calculate a z-score for each position. Finally,
we intersect the results to get positions that had significantly low or high MFE when
compared to both kinds of permuted versions of the MSA.

2.6 Survivability of TCGA Patients

To examine the effect of T1236C, T2677G, T3435C and their haplotypes on the survival
of cancer patients we used TCGA SNV and clinical data. We used the vital status of the
patients and a matching time-stamp in order to create Kaplan-Meier survival curves [64]
for the carriers and non-carriers groups. The time-stamp was derived from the maximum
value of the following attributes- “Days from the initial diagnosis to current follow-up”,
“Days from the initial diagnosis to the current confirmation of vital status”, “Days from
the initial diagnosis to patient death”. The logrank test [65] was used to assess whether
the survival curves of the carriers and non-carriers group significantly differ.

To assert that the results are not caused by differences in tumor mutational burden
(TMB), we repeated the analysis when controlling for this confounder; the balance of
the TMB between the mutated and control groups was tested using a two sample KS test
[66].

2.7 Stratification of TCGA Patients

For several analyses TCGA patients were stratified according to their cancer types as
suggested by Gao et al. [67] (see Table 1). The patients were assigned to one of three
groups–metabolic cancers, which are associatedwith alteredmetabolic pathways, prolif-
erative cancers, which are associated with dysregulated cell proliferation, and inflamma-
tory cancers, which are associated with immune system dysregulation. Because cancers
in these categories dysregulate different pathways, it is likely that drug resistance patterns
also differ between these categories. For example, metabolic cancers could dysregulate
drug-metabolizing enzymes or drug efflux pumps, while proliferative cancers have rapid
division rates and could lead to emergence of drug resistant clones through acquisition
of new mutations.

2.8 Empirical p-Values

To infer the significance of the changes caused by T1236C, T2677G and T3435C in
several of the analyses, they were compared to changes caused by random variants with
similar characteristics. T2677G is a non-synonymous variant and therefore its effect was
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compared to other, randomly sampled, T -> G non-synonymous variants in the MDR1
CDS. T1236C and T3435C are synonymous variants and therefore were both compared
to randomly sampled synonymous T -> C variants in the MDR1 CDS. Each original
variant was compared to one-hundred randomized sequences.

2.9 TCGA Variants Correlated with T1236C

T1236C was found as correlated with worse survival. To investigate the possibility of a
causal relationship, we examined mutations that are highly correlated with T1236C and
their effect on patient survival, searching for other potential effects. Highly correlated
variants were defined as variants that are detected in the genomes of more than 75% of
T1236C positive patients.

3 Results

Diverse computational models were deployed aiming to assess whether T1236C,
T2677G and T3435C could modify different phases of the gene expression process.
Additionally, genetic, clinical and expression data from The Cancer Genome Atlas
(TCGA) were analyzed for this purpose. It is important to mind the difference between
a germline variant, a genetic variation that is inherited and may be prevalent in the
population, and a somatic variant which is a genetic variation that is acquired during
one’s lifetime. While most of the previous research regarding MDR1 analyses germline
variants, our study examines both germline and somatic ones; when analyzing TCGA
data we strictly evaluate the effect of somatic variants in cancerous tissues, whereas the
rest of the computational analyses that do not utilized data from TCGA can be used to
interpret the effects of both somatic and germline variants, as they simply analyze the
effects caused by the nucleotide change and are “blind” to the type of variant.

3.1 T1236C, T2677G and T3435C Do not Seem to Significantly Affect MDR1
Expression Levels

MDR1 abundance was compared between TCGA patients that acquired any of the three
somatic variants and patients who did not (see Methods). Results, shown in Fig. 1,
indicate a marginal association between T1236C and MDR1 expression (p = 0.06) and
no association between T2677G and T3435CwithMDR1 expression levels. Differences
inmRNAabundance between carriers of the haplotypes and non-carrierswere also found
non-significant (0.11 < p < 0.24). When stratifying patients according to cancer types
(Table 1), no significant changes in expression were found as well.

Additionally, we used Enformer [55] to computationally assess whether the variants
are likely to cause a change inMDR1 expression. Enformer is a transformer-based neural
network that is trained on thousands of epigenetic and transcriptional datasets to predict
gene expression. It identifies complicated genomic patterns related to gene expression
regulation such as TSSs, TFBSs, histone modifications sites and miRNA binding sites.
With an input sequence of 393,216 nucleotides, it is currently the gene expression pre-
dictor with the widest receptive field. For each variant we ran Enformer for the reference
sequence and for the mutated sequence (see Methods). The predicted change in MDR1
expression was not significant for any of the variants, including T1236C.
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Fig. 1. MDR1 expression levels of carriers vs. non-carriers of the three variants in theTCGA
database. a: T1236C; b: T2677G; c: T3435C.Comparison of the mean MDR1 expression of the
carriers group (vertical line) to the mean MDR1 expression levels of 100,000 groups of randomly
chosen non-carriers (distribution). Size of the carriers’ group and non-carriers’ groups are the
same.

3.2 T1236C, T2677G and T3435C Do not Seem to Affect mRNA Splicing

SpliceAI [56] was used to assess whether the variants change MDR1 splicing. Given a
sequence, the output of spliceAI is a matrix of probabilities, indicating the probability
of each position in the sequence to be a donor or acceptor site (see Methods). For each
variant we ran SpliceAI for the reference sequence and for the mutated sequence. Using
the difference between probabilities we searched for canceled or newly generated donor
and acceptors sites, as these events could lead to alternative splicing. None of the variants
were found to cause significant changes.

3.3 T1236C, T2677G and T3435C Potentially Increase p-gp Levels Through
Raising Global Translation Rates

The rate of translation elongation is a key component that shapes protein abundance.
A change in the translation rate of a single codon can impact protein abundance if it
is located in a translation bottleneck. The translation rate varies throughout the mRNA
sequence and is dependent on multiple cellular conditions and factors such as accessi-
bility of the mRNA to the ribosome, codon usage bias and availability of tRNAs. In this
section we examine several measures correlated with the translation rate and evaluate
whether the three variants are expected to change it, locally or globally.
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T1236C, T2677G and T3435C All Decrease mRNA Folding Strength. T1236C
and T3435C Potentially Increase Global Translation Rates Due to this
Decrease. Minimum Free Energy (MFE) is a measure derived from predictions of the
secondary structure of an mRNA sequence; a lower MFE value indicates a structure that
is tightly packed and less accessible for translation. Therefore, lower MFE values are
correlated with lower translation rates [68].We computedMFE scores for the region sur-
rounding each of the three variants (see Methods) and predicted the instigated change
in MFE. The results (Fig. 2) demonstrate that all three variants cause an increase in
MFE. This increase is significantly larger (p= 0.01, p= 0.02 and p= 0.04 for T1236C,
T2677G and T3435C respectively) than the increase caused by random variants with
similar characteristics in the MDR1 gene (see Methods). Moreover, positions 1236 and
3435 (with the wild type alleles “T”) have relatively low MFE scores compared to the
rest of the coding sequence (CDS) positions (19th and 12th percentile respectively) and
therefore constitute possible translation bottlenecks (Fig. 7), suggesting that T1236C
and T3435C could also increase global translation rates.

Fig. 2. Effect of the three variants onMFE in their vicinity. a: T1236C; b: T2677G; c: T3435C.
x axis: the nucleotide position in the coding sequence (CDS); y axis: MFE score. The vertical
line indicates the position of the variant, and the curves depict the MFE scores of the nucleotides
proximal to the position of the variant, with (pink) or without it (green). (Color figure online)
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T1236C, T2677G and T3435C Increase the Optimality of Codon Usage. T1236C
Potentially Increases Global Translation Rates Due to This Increase. We compute
Codon Adaptation Index (CAI) and Frequency Per 1000 codons (FPTC) to measure the
change in codon usage bias (CUB) caused by the three variants, where CAI is computed
for the synonymous variants and FPTC for the non-synonymous variant. Higher CUB
suggests better adaptation of the sequence to the cellular translation machinery and
resources and is correlated with faster translation [69]. Results (Fig. 3) indicate that all
three variants cause a less prevalent codon to be replaced by a more prevalent codon,
suggesting an increase in local translation rate. Moreover, T1236C substitutes the least
prevalent codonofGlycine to themost commonone.Whencomparing to randomvariants
with similar characteristics in the MDR1 gene, the increase in CAI caused by T1236C is
marginally significant (p = 0.08). Also, the CAI score of codon 412 (in which position
1236 resides) is in the 16th percentile of CAI scores compared to all the codons in the
CDS, further strengthening the possibility that it is a translational bottleneck and that
T1236C could increase global translation rate.

Fig. 3. Effect of the three variants on CUB. a: T1236C; b: T2677G; c: T3435C. x axis: the
amino-acid position in the protein sequence; y axis: the CUB score (CAI/FPTC). The vertical
line indicates the position of the variant. Black dots indicate the CUB scores in the vicinity of the
variant and the dots on the vertical line indicate the CUB score of the mutated position, before
(green) and after (pink). (Color figure online)
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T1236C and T2677G Improve Adaptation to the tRNA Pool in Tissues Where
MDR1 is Expressed. T2677G Potentially Increases Global Translation Rates Due
to the Improvement in Adaptation The tRNA Adaptation Index (tAI) is a mea-
sure of translational efficiency which considers the intracellular concentration of tRNA
molecules and the efficiencies of each codon–anticodon pairing [70]. Higher tAI scores
are given to codons with better tRNA availability and are correlated with a higher trans-
lation rate [71]. The tRNA availability changes substantially between different tissues
and organs. We examine the effect of the variants on the tAI profile in tissues where the
MDR1 gene is typically expressed (seeMethods) – liver, kidney, colon and brain tissues.
tAI scores for the adrenal glands were not available. Figure 4 demonstrates the effect of
the variants on the tAI profile in the liver tissue, but it is similar for all other examined
tissues (more data will be report in the full version of this paper). The results of this anal-
ysis show that both T1236C and T2677G cause an increase in tAI. Moreover, T2677G
replaces a codon with an extremely low tRNA availability to a codon with much higher
tRNA availability, in all examined tissues. When comparing the tAI change caused by
T2677G to changes caused by random variants with similar characteristics in the MDR1
gene, the former is found either significantly or marginally significantly larger in all
relevant tissues (p < = 0.1). Moreover, the tAI score of the codon affected by T2677G
is in the 1st–5th (depending on the tissue) percentile of the tAI scores of all the codons in

Fig. 4. Effect of the three variants on tAI. a: T1236C; b: T2677G; c: T3435C.x axis: the amino-
acid position in the protein sequence; y axis: the tAI score. The vertical line indicates the position
of the variant. Black dots indicate the tAI scores in the vicinity of the variant and the dots on the
vertical line indicate the tAI score of the mutated position, before (green) and after (pink). (Color
figure online)
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the CDS, strengthening the indication that the position could be a translation bottleneck
and that T2667G could increase global translation speed.

To conclude, the variants are in positions that are potential translation bottlenecks as
they all obtain scores that are close to the minimal score of the entire CDS in at least one
of the examinedmeasures. All three variants lead to an increase ofMFE andCUB scores,
the increase in MFE being significantly larger than expected by chance. Additionally,
T1236CandT2677Gcause an increase in tAI scores in tissueswhereMDR1 is expressed,
with T2677G leading to an extreme and significant tAI change. Notably, a variant can
cause an increase of one factor while decreasing the others and vise-versa. In fact, when
examining all synonymous variants across TCGAwe find a negative correlation between
the effect of variants onMFE and CAI (p=−0.13, p< 10^−323) and between the effect
on MFE and tAI (p=−0.18, p< 10^−323). The increase in MFE, CAI and tAI caused
by all three variants provides accumulating evidence and suggest that T1236C, T2677G
and T3435C likely increase local translation rates in their vicinity, and possibly increase
global translation rates and protein levels.

3.4 T3435C Potentially Modifies Co-translational Protein Folding Through
Raising Local Translation Rate in a Conserved Slowly Translated Region

CTF is the mechanism in which the nascent protein begins to fold during its translation
[72]. This process was shown to be governed by local translation rates [62]. To examine
whether T1236C, T2677G and T3435C influence CTF we deployed a model which
detects positions that have evolutionary conserved extreme MFE scores. The rationale
being that MFE scores can be used as proxies for translation rates and that positions
with evolutionary conserved extreme translation rates (especially slow rates) are largely
conserved as such due to their importance for optimal CTF. Therefore, it is possible that
variants in these positions interfere with the CTFmechanism. In order to find positions in
the CDS of MDR1 with conserved extreme MFE scores, the model utilizes orthologous
MDR1 genes from hundreds of organisms, calculates their MFE profiles and compares
them to the MFE profiles of permuted versions of these genes (see Methods).

Model output (Fig. 5) indicates that T3435C is in a position with evolutionary con-
served low MFE, surrounded by a stretch of positions with conserved low MFE (6
nucleotides upstream of T3435C and 17 downstream of it). Combining the results of
this model and the results of the previous analysis which suggests that T3435C causes
a local increase in translation rate, we deduce that it is possible that T3435C causes an
increase in translation rate in a region of conserved low translation rates, and thus mod-
ifies CTF. Both T1236C and T2677G were not found to be in a position of evolutionary
conserved extreme MFE.
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Fig. 5. Regions of evolutionary conserved low or high MFE in the vicinity of the three
variants. a: T1236C; b: T2677G; c: T3435C. x axis: the nucleotide position on the CDS of the
MDR1 gene. y axis: the MFE score, which is used by this model as the proxy for translation rate.
The purple curve indicates the mean MFE score of the true MDR1 CDS across 383 orthologs.
The orange and brown curves indicate the mean MFE score of a permuted MDR1 CDS, using two
different kinds of permutations – vertical permutations (VP) and horizontal permutations (HP).
Green dots are nucleotide positions for which the MFE of the true MDR1 was significantly higher
than the MFE of both permutated versions, across organisms. Red dots are nucleotide positions
for which the MFE of the true MDR1 was significantly lower than the MFE of both randomized
versions, across organisms.

3.5 T1236C Potentially Decreases Patient Survivability

Clinical data of TCGA patients were used to assess the variants’ effect on survivability.
Kaplan Meier curves [64] were compared between patients that acquired one or more of
the three variants in their cancerous tissue and those who did not (see Methods). Results
(Fig. 6 and Fig. 8 for the haplotypes) suggest that T1236C decreases survival probability
(logrank T = 5.22, p = 0.02. Bonferroni corrected p = 0.06) whereas T2677G and
T3435C do not. Other TCGA variants that are highly correlated with the presence of
T1236C (seeMethods) are not correlatedwith decreased survivability (Fig. 9), enhancing
the likelihood that T1236C is a causal variant.

When stratifying patients according to cancer types (Table 1), we find a signifi-
cant negative impact (p = 0.002) on the survival of patients with inflammatory cancers
(Fig. 10).
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Fig. 6. Effect of the three variants on patient survivability. a: T1236C; b: T2677G; c: T3435C.
Comparison of the Kaplan-Meier survival curves of the carriers’ group and the non-carriers group
of the three variants.

4 Discussion

Since the discovery of MDR1 and its many variants, numerous in-vitro and in-vivo
studies have attempted to understand their mechanisms of action and contribution to
chemotherapy resistance and cancer prognosis.Due to contradictoryfindings and the lack
of success of MDR1 inhibitors in clinical trials [73], research of MDR1 and its variants
has gradually diminished. However, the current surge in genomic data and evolving
technology enables the examination of this case from a new, data-driven, perspective.

Our analyses aid to paint a clearer image, providing evidence of accumulating effects.
T1236Ccauses an increase inCAI, tAI andMFE, all positively correlatedwith translation
rates. Because it is in a region of low MFE and CAI, this increase could lead to a rise in
global translation rates and p-gp over-expression. Moreover, T1236C was found to be
correlative with worse patient prognosis, which can be explained by overexpression of
the protein. T2677G also causes an increase in measures correlated in translation rates
and most significantly effects tAI. It causes a codon that is extremely rare in tissues
where MDR1 is expressed to be replaced with a common codon. T3435C increases
MFE and CAI as well, in a region of very low MFE. Additionally, it possibly modifies
p-gp structure through changing local translation rate. Altogether, when exploring the
mechanism of action of T1236C, T2677G and T3435C, it is much more likely that they
cause an increase in p-gp expression rather than adecrease, providing an advantage for the
cancer cell. Due to these findings, we expected patients with the CGC haplotype to have
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significantly worse survival, but it was not detected (Fig. 8). Perhaps the combination of
the three variants leads to a more complexed effect than the accumulated impact of each
one separately. Alternatively, perhaps a significant effect on survival was not observed
due to the small size of the cohort and confounders such as patients’ cancer type and
treatment regime.

Though the findings of previous research on the matter are inconsistent, our analyses
support the conclusions of several major studies. Kimchey-Zarfaty at el. Demonstrated
that T3435C, combined with either T1236C or T2677G, changesMDR1 substrate speci-
ficity [24]. They hypothesized that T3435C modifies CTF (and therefore protein con-
formation) because it changes the local translation rate in a slowly translated region,
important for correct CTF. They supported their hypothesis by identifying a cluster of
non-prevalent codons in the vicinity of T3435C (as can be seen in Fig. 3c). Our model,
which utilizes MFE and assesses which positions are evolutionarily conserved for slow
or fast translation, indeed detects 3435 in a region that is likely conserved for slow trans-
lation, supporting their findings.Moreover, we demonstrated that T3435C increases both
MFE and CAI scores, suggesting that it could increase the local translation rate in this
slowly translated region and thus modify CTF. Kimchey-Zarfaty et al. also examined
mRNA expression, protein expression and aberrant splicing events in wild-type and
mutated p-gp and reports that no changes were caused by the variants. To the best of our
knowledge, no prior study has suggested that T1236C, T2677G or T3435C cause alter-
native splicing; our results, obtained using SpliceAI [56], support the consensus. As for
mRNA and protein expression, most in-vitro studies do not report a significant change,
while some in-vivo studies do. This could be due to a complicated mechanism of action
that cannot be detected out of the natural cellular environment. Nevertheless, reports
of the in-vivo studies are also controversial, perhaps due to the tremendous variability
in MDR1 expression between patients, small cohorts and difference in patient ethnici-
ties, genetic backgrounds and tumor types. Combining the results of our analyses, we
assess that if the variants do modify protein levels, they should cause an increase rather
than a decrease. In another comprehensive study, Johnatty SE et al. [74] examine 4,616
ovarian cancer patients from the Ovarian Cancer Association Consortium (OVAC) and
TCGA, that have received chemotherapy treatments. They found a marginal association
of T1236C with worse overall survival and did not find association between T2677G
or T3435C and survival parameters. Additionally, Chen et al. [75] performed a meta-
analysis involving 3,320 patients across 15 studies and concluded that a TT genotype in
position 1236 is associated with better overall survival. Both these findings are supported
by our pan-cancer survival analysis on TCGA data, shown in Fig. 6.

When reviewing the analyses described in this study, we must remember the limita-
tions of in-silico models as well; A major limitation of this study is the small cohorts of
mutated patients; our carriers data is comprised of 20, 26 and 20 patients with T1236C,
T2677G and T3435C respectively. In the future, once more genomic data is available,
we suggest measuring both mRNA and protein levels of MDR1 of cancer patients that
carry these mutations. Also, a significantly larger cohort could allow us to split patients
according to their specific cancer types, ethnicities and received chemotherapy regi-
mens while keeping the required statistical power. As MDR1 is related to the response
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to chemotherapy, it is likely that the effect of the variants on patient survivability is depen-
dent on the patient’s received treatment; not all chemotherapeutic agents are substrates
of p-gp, and the effect of the variant among different substrates could also vary, making
this analysis highly important. Another limitation is the difficulty to create models that
capture all relevant processes and interactions in highly complex biological mechanisms
such as gene expression regulation. Moreover, some of the models were trained on data
obtained from wet lab experiments and thus are also subjected to noise. Nonetheless,
computational models have many advantages; they are often less expensive, faster and
can incorporate larger quantities of data than in-vitro experiments. We believe the incor-
poration of computational, data-driven models is both essential and highly beneficial
when analyzing the complex effects of variants on gene expression regulation, generally
and specifically for the case of MDR1.
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Appendix

Fig. 7. MFE profile of the unmutated CDS sequence of MDR1. The positions of the variants are
denoted in blue (1236), orange (2677) and green (3435). The percentile of the MFE score of the
positions of the variants (when unmutated) is denoted in the legend. (Color figure online)
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Fig. 8. Kaplan-Meier survival curves of the carriers and non-carriers of the combinations
of the three variants, from the TCGA database. a: T1236C & T2677G; b: T1236C & T3435C;
c: T2677G & T3435C;. d: T1236C, T2677G & T3435C.

Fig. 9. Kaplan-Meier survival curves of carriers vs. non-carriers of TCGA mutations that are
highly correlated with T1236C (present in the genomes of over 75% of T1236C positive patients)
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Fig. 10. Kaplan-Meier survival curves of carriers vs. non-carriers of the three variants,
stratified cancer types. Left column – inflammatory cancers. Middle column- proliferative
cancers. Right column- metabolic cancers. Categories are described in Table 1.

Table 1. Cancer type clusters

Cluster Cancer Types

Metabolic Cancers LAML, UCS, HNSC, ESCA, UVM, CHOL, LIHC

Proliferative Cancers BLCA, SKCM, SARC, COAD, UCEC, MESO, ACC, LUAD, KIRC,
KIRP, DLBC, TGCT, PRAD

Inflammatory Cancers PAAD, LGG, CESC, GBM, READ, LUSC, BRCA, STAD, THCA,
OV, KICH, PCPG, THYM
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